The CLaC Discourse Parser at CoNLL-2015

نویسندگان

  • Majid Laali
  • Elnaz Davoodi
  • Leila Kosseim
چکیده

This paper describes our submission (kosseim15) to the CoNLL-2015 shared task on shallow discourse parsing. We used the UIMA framework to develop our parser and used ClearTK to add machine learning functionality to the UIMA framework. Overall, our parser achieves a result of 17.3 F1 on the identification of discourse relations on the blind CoNLL-2015 test set, ranking in sixth place.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The CLaC Discourse Parser at CoNLL-2016

This paper describes our submission (CLaC) to the CoNLL-2016 shared task on shallow discourse parsing. We used two complementary approaches for the task. A standard machine learning approach for the parsing of explicit relations, and a deep learning approach for non-explicit relations. Overall, our parser achieves an F1score of 0.2106 on the identification of discourse relations (0.3110 for exp...

متن کامل

Two End-to-end Shallow Discourse Parsers for English and Chinese in CoNLL-2016 Shared Task

This paper describes our two discourse parsers (i.e., English discourse parser and Chinese discourse parser) for submission to CoNLL-2016 shared task on Shallow Discourse Parsing. For English discourse parser, we build two separate argument extractors for single sentence (SS) case, and adopt a convolutional neural network for Non-Explicit sense classification based on (Wang and Lan, 2015b)’s wo...

متن کامل

A Refined End-to-End Discourse Parser

The CoNLL-2015 shared task focuses on shallow discourse parsing, which takes a piece of newswire text as input and returns the discourse relations in a PDTB style. In this paper, we describe our discourse parser that participated in the shared task. We use 9 components to construct the whole parser to identify discourse connectives, label arguments and classify the sense of Explicit or Non-Expl...

متن کامل

The UniTN Discourse Parser in CoNLL 2015 Shared Task: Token-level Sequence Labeling with Argument-specific Models

Penn Discourse Treebank style discourse parsing is a composite task of identifying discourse relations (explicit or nonexplicit), their connective and argument spans, and assigning a sense to these relations from the hierarchy of senses. In this paper we describe University of Trento parser submitted to CoNLL 2015 Shared Task on Shallow Discourse Parsing. The span detection tasks for explicit r...

متن کامل

The DCU Discourse Parser: A Sense Classification Task

This paper describes the discourse parsing system developed at Dublin City University for participation in the CoNLL 2015 shared task. We participated in two tasks: a connective and argument identification task and a sense classification task. This paper focuses on the latter task and especially the sense classification for implicit connectives.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015